An iterative method for solving a bi-objective constrained portfolio optimization problem

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this work, we consider the problem of portfolio optimization under cardinality and quantity constraints. We use the standard model of mean-variance in its bi-objective form which is presented here as a bi-objective quadratic programming problem under cardinality and quantity constraints. This problem is NP-hard, which is why the majority of methods proposed in the literature use metaheuristics for its resolution. In this paper, we propose an iterative method for solving constrained portfolio optimization problems. Experiments are performed with major market indices, such as the Hang Seng, DAX, FTSE, S&P 100, Nikkei, S&P 500 and Nasdaq using real-world datasets involving up to 2196 assets. Comparisons with two exact methods and a metaheuristic are performed. These results show that the new method allows to find efficient portfolio fronts in reasonable time.

Cite

CITATION STYLE

APA

Bezoui, M., Moulaï, M., Bounceur, A., & Euler, R. (2019). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479–498. https://doi.org/10.1007/s10589-018-0052-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free