Remote sensing of sea surface glacial meltwater on the Antarctic Peninsula shelf

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Glacial meltwater is an important environmental variable for ecosystem dynamics along the biologically productive Western Antarctic Peninsula (WAP) shelf. This region is experiencing rapid change, including increasing glacial meltwater discharge associated with the melting of land ice. To better understand the WAP environment and aid ecosystem forecasting, additional methods are needed for monitoring and quantifying glacial meltwater for this remote, sparsely sampled location. Prior studies showed that sea surface glacial meltwater (SSGM) has unique optical characteristics which may allow remote sensing detection via ocean color data. In this study, we develop a first-generation model for quantifying SSGM that can be applied to both spaceborne (MODIS-Aqua) and airborne (PRISM) ocean color platforms. In addition, the model was prepared and verified with one of the more comprehensive in-situ stable oxygen isotope datasets compiled for the WAP region. The SSGM model appears robust and provides accurate predictions of the fractional contribution of glacial meltwater to seawater when compared with in-situ data (r = 0.82, median absolute percent difference = 6.38%, median bias = −0.04), thus offering an additional novel method for quantifying and studying glacial meltwater in the WAP region.

Cite

CITATION STYLE

APA

Pan, B. J., Gierach, M. M., Meredith, M. P., Reynolds, R. A., Schofield, O., & Orona, A. J. (2023). Remote sensing of sea surface glacial meltwater on the Antarctic Peninsula shelf. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1209159

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free