Neurokinin-1 Receptor Signalling Impacts Bone Marrow Repopulation Efficiency

Citations of this article
Mendeley users who have this article in their library.


Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1-/-) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1-/-, Tac4-/- and Tac1-/-/Tac4-/- mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment. © 2013 Berger et al.




Berger, A., Frelin, C., Shah, D. K., Benveniste, P., Herrington, R., Gerard, N. P., … Paige, C. J. (2013). Neurokinin-1 Receptor Signalling Impacts Bone Marrow Repopulation Efficiency. PLoS ONE, 8(3).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free