In the gravity sensor of a superconducting gravimeter, a superconducting sphere as a test mass is levitated in a magnetic field. Such a sensor is susceptible to applied horizontal as well as vertical acceleration, because the translational degrees of freedom of the mass are not perfectly limited to the vertical direction. In the case of the superconducting gravimeter CT #036 installed at Ishigakijima, Japan, horizontal ground acceleration excited by the movements of a nearby VLBI antenna induces systematic step noise within the gravity recordings. We investigate this effect in terms of the static and dynamic properties of the gravity sensor using data from a collocated seismometer. It is shown that this effect can be effectively modeled by the coupling between the horizontal and vertical components in the gravity sensor. It is also found that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Imanishi, Y., Nawa, K., Tamura, Y., & Ikeda, H. (2018). Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0777-9