In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Intrinsic pathway of apoptosis is generally mediated by BCL-2 (B cell lymphoma 2) family of proteins; they either induce or inhibit the apoptosis. Overexpression of BCL-2 in cancer cell may lead to delay in apoptosis. BCL-w is the pro-survival member of the BCL-2 family. BCL2L2 gene is present on chromosome number 14 in humans, and it encodes BCL-w protein; BCL-w protein is 193 amino acids residues in length. Interactions among the BCL-2 proteins are very specific. The fate of cell is determined by the ratio of pro-apoptotic proteins to pro-survival proteins. BCL-w promotes cell survival. Studies suggested that overexpression of BCL-w protein is associated with many cancers including DLBCL, BL, colorectal cancers, gastric cancers, and many more. The cause of overexpression is translocations or gene amplification which will subsequently result in cancerous activity. Process: For in-silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Different tools were used to detect the deleteriousness of the variants. Result: In silico mutational study reveals how the non-synonymous mutations directly affect the protein’s native structure and its function. Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants, 28 of the missense mutations was probably damaging with a score ranging from 0.9 to 1, while 24 variants were benign with a score ranging from 0 to 0.4. Conclusions: This in silico work aims to determine how missense mutations in BCL-w protein affect the activity of the protein, the stability of the protein, and to determine the pathogenicity of the variants. Prediction of pathogenicity of variants will reveal if the missense mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.

Cite

CITATION STYLE

APA

Kumari, P., & Rameshwari, R. (2022). In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants. Journal of Genetic Engineering and Biotechnology, 20(1). https://doi.org/10.1186/s43141-022-00389-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free