Background: Spinal cord metastatic lesions affect a high number of cancer patients usually resulting in spinal cord compression syndrome. A major obstacle in the research of spinal metastatic disease is the lack of a simple reproducible animal model that mimics the natural course of the disease. In this study, we present a highly reproducible rodent model that can be used for different types of cancers while mimicking the natural course of human metastatic spinal cord compression syndrome.Results: All sixteen Fisher 344 rats survived the dorsal approach intraosseous implantation of CRL-1666 adenocarcinoma cells and both rats survived the sham control surgery. By Day 13 functional analysis via the modified Basso-Beattie-Bresnahan (BBB) locomotor rating scale showed significant decrease in motor function; median functional score was 3 for the tumor group (p = 0.0011). Median time to paresis was 8.7 days post-operatively. MR imaging illustrated repeated and consistent tumor formation, furthermore, onset of neurological sequale was the result of tumor formation and cord compression as confirmed by histological examination.Conclusions: Analysis of these findings demonstrates a repeatable and consistent tumor growth model for cancer spinal metastases in rats. This novel rat model requires a less intricate surgical procedure, and as a result minimizes procedure time while subsequently increasing consistency. Therefore, this model allows for the preclinical evaluation of therapeutics for spinal metastases that more closely replicates physiological findings. © 2012 Zibly et al.; licensee BioMed Central Ltd.
CITATION STYLE
Zibly, Z., Schlaff, C. D., Gordon, I., Munasinghe, J., & Camphausen, K. A. (2012). A novel rodent model of spinal metastasis and spinal cord compression. BMC Neuroscience, 13(1). https://doi.org/10.1186/1471-2202-13-137
Mendeley helps you to discover research relevant for your work.