Skip to main content

Reverse engineering time discrete finite dynamical systems: A feasible undertaking?

Citations of this article
Mendeley users who have this article in their library.


With the advent of high-throughput profiling methods, interest in reverse engineering the structure and dynamics of biochemical networks is high. Recently an algorithm for reverse engineering of biochemical networks was developed by Laubenbacher and Stigler. It is a top-down approach using time discrete dynamical systems. One of its key steps includes the choice of a term order, a technicality imposed by the use of Gröbner-bases calculations. The aim of this paper is to identify minimal requirements on data sets to be used with this algorithm and to characterize optimal data sets. We found minimal requirements on a data set based on how many terms the functions to be reverse engineered display. Furthermore, we identified optimal data sets, which we characterized using a geometric property called "general position". Moreover, we developed a constructive method to generate optimal data sets, provided a codimensional condition is fulfilled. In addition, we present a generalization of their algorithm that does not depend on the choice of a term order. For this method we derived a formula for the probability of finding the correct model, provided the data set used is optimal. We analyzed the asymptotic behavior of the probability formula for a growing number of variables n (i.e. interacting chemicals). Unfortunately, this formula converges to zero as fast as r(qn), where qεℕ and 0




Delgado-Eckert, E. (2009). Reverse engineering time discrete finite dynamical systems: A feasible undertaking? PLoS ONE, 4(3).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free