NEMo: An evolutionary model with modularity for PPI networks

2Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary driver of genomic evolution, recent work has focused on duplication-based models. Missing from these models is any embodiment of modularity, a widely accepted attribute of biological networks. Some models spontaneously generate modular structures, but none is known to maintain and evolve them. We describe NEMo (Network Evolution with Modularity), a new model that embodies modularity. NEMo allows modules to emerge and vanish, to fission and merge, all driven by the underlying edge-level events using a duplication-based process. We introduce measures to compare biological networks in terms of their modular structure and use them to compare NEMo and existing duplication-based models and to compare both generated and published networks.

Cite

CITATION STYLE

APA

Ye, M., Racz, G. C., Jiang, Q., Zhang, X., & Moret, B. M. E. (2016). NEMo: An evolutionary model with modularity for PPI networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9683, pp. 224–236). Springer Verlag. https://doi.org/10.1007/978-3-319-38782-6_19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free