Assessing Objective Functions in Streamflow Prediction Model Training Based on the Naïve Method

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research results, we test a simple, universal, and efficient benchmark method, namely, the naïve method, for short-term streamflow prediction. Using the naïve method, we assess the streamflow forecasting performance of the long short-term memory models trained with different objective functions, including mean squared error (MSE), root mean squared error (RMSE), Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), and mean absolute error (MAE). The experiments over 273 watersheds show that the naïve method attains good forecasting performance (NSE > 0.5) in 88%, 65%, and 52% of watersheds at lead times of 1 day, 2 days, and 3 days, respectively. Through benchmarking by the naïve method, we find that the LSTM models trained with squared-error-based objective functions, i.e., MSE, RMSE, NSE, and KGE, perform poorly in low flow forecasting. This is because they are more influenced by training samples with high flows than by those with low flows during the model training process. For comprehensive short-term streamflow modeling without special demand orientation, we recommend the application of MAE instead of a squared-error-based metric as the objective function. In addition, it is also feasible to perform logarithmic transformation on the streamflow data. This work underscores the critical importance of appropriately selecting the objective functions for model training/calibration, shedding light on how to effectively evaluate the performance of streamflow forecast models.

Cite

CITATION STYLE

APA

Lin, Y., Wang, D., Jiang, T., & Kang, A. (2024). Assessing Objective Functions in Streamflow Prediction Model Training Based on the Naïve Method. Water (Switzerland), 16(5). https://doi.org/10.3390/w16050777

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free