Irrigation waters may facilitate the spread of antibiotic-resistant bacteria or genes to humans and animals. Monitoring of resistance in irrigated waters has become common; however, many studies do not incorporate a spatial component into sampling designs. The objective of this work was to assess spatiotemporal variations in tetracycline-resistant E. coli in an irrigation pond. Water samples were collected at 10 locations and two different water depths, and in situ and laboratory water quality measurements were performed. The percentage of E. coli resistant to the low (4 μg mL−1) and high (16 μg mL−1) tetracycline doses varied by date and location but were observed to be as high as 12.7% and 6.3% of the total population throughout the study, respectively. While significant differences were not observed between resistance levels measured at different depths, on one date resistant E. coli were only detected in samples collected at depth. Nitrate, fluorescent dissolved organic matter, and dissolved oxygen concentrations were found to be the leading control variables for the percentage of resistant E. coli. This work demonstrates that there may be substantial spatial variability in concentrations of antibiotic-resistant E. coli in irrigation ponds which should be accounted for in the design of monitoring programs.
CITATION STYLE
Stocker, M., Smith, J., & Pachepsky, Y. (2023). Spatial Variation of Tetracycline-Resistant E. coli and Relationships with Water Quality Variables in Irrigation Water: A Pilot Study. Applied Microbiology, 3(2), 504–518. https://doi.org/10.3390/applmicrobiol3020036
Mendeley helps you to discover research relevant for your work.