Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers

64Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

Abstract

In this work, the synthesis, characterization, and photocatalytic performance of zinc ox-ide/activated carbon fiber nanocomposites prepared by hydrothermal method were investigated. Zinc oxide nanoparticles (ZnO-NP) were deposited as seeds on porous activated carbon fiber (ACF) substrates. Then, zinc oxide nanorods (ZnO-NR) were successfully grown on the seeds and assembled on the fibers’ surface in various patterns to form ZnO-NR/ACF nanocomposites. The nanocompos-ites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, UV–vis diffuse reflectance spectra (DRS), and Brunauer– Emmett–Teller (BET) surface area analysis. SEM images showed that brush-like and flower-like ZnO-NR patterns were grown uniformly on the ACF surface with sizes depending on the ZnO-NP concentration, growth time, and temperature. The FTIR spectrum confirmed the presence of the major vibration bands, especially the absorption peaks representing the vibration modes of the COOH (C = O and C = C) functional group. Adsorption and photocatalytic activities of the synthesized catalytic adsorbents were compared using methylene blue (MB) as the model pollutant under UV irradiation. ZnO-NR/ACF nanocomposites showed excellent photocatalytic activity (~99% degradation of MB in 2 h) compared with that of bare ZnO-NR and ACF. Additionally, a recycling experiment demonstrated the stability of the catalyst; the catalytic degradation ratio of ZnO-NR/ACF reached more than 90% after five successive runs and possessed strong adsorption capacity and high photocatalytic ability. The enhanced photocatalytic activities may be related to the effects of the relatively high surface area, enhanced UV-light absorption, and decrease of charge carrier recombination resulting from the synergetic adsorption–photocatalytic degradation effect of ZnO and ACF.

Cite

CITATION STYLE

APA

Albiss, B., & Abu-Dalo, M. (2021). Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094729

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free