Fast methods for three-dimensional inverse obstacle scattering problems

32Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

We study the inverse problem to reconstruct the shape of a three dimensional sound-soft obstacle from measurements of scattered acoustic waves. To solve the forward problem we use a wavelet based boundary element method and prove fourth order accuracy both for the evaluation of the forward solution operator and its Fréchet derivative. Moreover, we discuss the characterization and implementation of the adjoint of the Fréchet derivative. For the solution of the inverse problem we use a regularized Newton method. The boundaries are represented by a class of parametrizations, which include non star-shaped domains and which are not uniquely determined by the obstacle. To prevent degeneration of the parametrizations during the Newton iteration, we introduce an additional penalty term. Numerical examples illustrate the performance of our method. © 2007 Rocky Mountain Mathematics Consortium.

References Powered by Scopus

Über das Dirichletsche Außenraumproblem für die Helmholt zsche Schwingungsgleichung

230Citations
N/AReaders
Get full text

The domain derivative and two applications in inverse scattering theory

209Citations
N/AReaders
Get full text

On convergence rates for the iteratively regularized Gauss-Newton method

208Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Linear integral equations

407Citations
N/AReaders
Get full text

Looking back on inverse scattering theory

45Citations
N/AReaders
Get full text

A survey on inverse problems for applied sciences

40Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Harbrecht, H., & Hohage, T. (2007). Fast methods for three-dimensional inverse obstacle scattering problems. Journal of Integral Equations and Applications, 19(3), 237–260. https://doi.org/10.1216/jiea/1190905486

Readers over time

‘11‘13‘15‘18‘19‘20‘2200.751.52.253

Readers' Seniority

Tooltip

Professor / Associate Prof. 4

40%

PhD / Post grad / Masters / Doc 4

40%

Lecturer / Post doc 1

10%

Researcher 1

10%

Readers' Discipline

Tooltip

Mathematics 8

89%

Computer Science 1

11%

Save time finding and organizing research with Mendeley

Sign up for free
0