The hippocampus plays an important role in spatial learning and memory. However, the biochemical alterations that subserve this function remain to be fully elucidated. In this study, rats were subjected to a single-trial contextual fear conditioning (CFC) paradigm; the activation of different protein kinase C (PKC) subtypes and the levels and phosphorylation of the plasticity-associated protein GAP-43 were assayed in the hippocampus at varying times after training. We observed a rapid activation of hippocampal PKC (15 min through 24 h), with differential translocation of the PKC isotypes studied. At early times after CFC (15-90 min), PKCα and PKCγ translocated to the membrane, while PKCβII and PKCε moved more transiently (15 to 30 min) to the cytosol. These PKC isotypes returned to the membrane at later time points after CFC. Correlating with these changes in PKC translocation and activity, there was an early decrease in GAP-43 phosphorylation followed by a more sustained increase from 1.5-72 h. GAP-43 protein levels were also increased after 3 h, and these levels remained elevated for at least 72 h. These changes in PKC and GAP-43 were specific to the CFC trained animals and no changes were seen in animals exposed to the same stimuli in a non-associative fashion. Comparison of translocation of different PKC isotypes with the changes in GAP-43 phosphorylation suggested that PKCβII and PKCε may mediate both the early changes in the phosphorylation of this protein and the increases in GAP-43 expression at later times after CFC. © 2002 Wiley-Liss, Inc.
CITATION STYLE
Young, E., Cesena, T., Meiri, K. F., & Perrone-Bizzozero, N. I. (2002). Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus, 12(4), 457–464. https://doi.org/10.1002/hipo.10015
Mendeley helps you to discover research relevant for your work.