Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM

49Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Transition metal carbides are of great potential for electrochemical applications. The phase and facet of molybdenum carbides greatly affect the electrochemical performance. Carburization of MoO3 inside a transmission electron microscope to monitor the growth process of molybdenum carbides is performed. Carbon sources with different activities are used and the controllable growth of molybdenum carbides is investigated. The results show that the relatively inert amorphous carbon film produces Mo2C, where the interstitial sites formed by hexagonal closed packing molybdenum atoms are partially occupied by carbon atoms. In contrast, the carbon decomposed from the sucrose has a high portion of sp3 hybridized and crosslinked carbon atoms with high reactivity, leading to the formation of MoC with full occupation of interstitial sites by carbon atoms. In addition, the MoC growth experiences a (111) to (100) facets change with the increase of temperature. The (111) facet formed at low temperature has Mo-terminated or C-terminated surface with higher surface energy and higher reactivity, while the (100) facet with 1:1 C/Mo ratio on the surface exhibits enhanced stability. The phase and facet control by carbon source and temperature allow us to tune the crystal structures and surface atoms as well as their electrochemical properties.

Cite

CITATION STYLE

APA

Lin, Z., Cai, L., Lu, W., & Chai, Y. (2017). Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM. Small, 13(35). https://doi.org/10.1002/smll.201700051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free