Tetraazamacrocyclic complexes of NiII and CuII can be used as components of catenanes or rotaxanes showing electrochemically switched intramolecular motion in solution. In our present studies, we modify these compounds with organothiol chains to attach them to the surface of the electrode using the self-assembly method and employ them next as molecular switches, which change conductivity upon applying appropriate potential. The electrochemical properties of these compounds are studied in the solution and, in the case of thiol derivative, immobilized on the electrode surface. The macrocyclic complex of NiII, immobilized on the Au surface, forms the axis of the rotaxane. This compound can be anchored to the surface by one or two thiol groups. The data obtained from scanning tunneling microscopy (STM) experiments using colloidal Au confirm that the orientation normal to the surface dominates. The electrochemical experiments reveal reversible one-electron oxidation of metal center from +2 to +3. The behavior of the electrode modified with the macrocyclic complex of NiII upon immersion in a solution containing bismacrocyclic complex of NiII points to the formation of a new rotaxane-like nanostructure on the surface of the electrode. © 2007 IUPAC.
CITATION STYLE
Wiȩckowska, A., Wiśniewska, M., Chrzanowski, M., Kowalski, J., Korybut-Daszkiewicz, B., & Bilewicz, R. (2007). Self-assembly of a nickel(II) pseudorotaxane nanostructure on a gold surface. In Pure and Applied Chemistry (Vol. 79, pp. 1077–1085). https://doi.org/10.1351/pac200779061077
Mendeley helps you to discover research relevant for your work.