Antimalarial activity of human group IIA secreted phospholipase A2 in relation to enzymatic hydrolysis of oxidized lipoproteins

15Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2. Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.

Cite

CITATION STYLE

APA

Dacheux, M., Sinou, V., Payré, C., Jeammet, L., Parzy, D., Grellier, P., … Lambeau, G. (2019). Antimalarial activity of human group IIA secreted phospholipase A2 in relation to enzymatic hydrolysis of oxidized lipoproteins. Infection and Immunity, 87(11). https://doi.org/10.1128/IAI.00556-19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free