3D printing is gaining traction in research and development as a way to quickly, cheaply, and easily manufacture polydimethylsiloxane (PDMS) molds. The most commonly used method is resin printing, which is relatively expensive and requires specialized printers. This study shows that polylactic acid (PLA) filament printing is a cheaper, more readily available alternative to resin printing, that does not inhibit the curing of PDMS. As a proof of concept, a PLA mold for PDMS-based wells was designed, and 3D printed. We introduce an effective method to smooth the printed PLA mold, based on chloroform vapor treatment. After this chemical post-processing step, the smoothened mold was used to cast a ring of PDMS prepolymer. The PDMS ring was attached to a glass coverslip after oxygen plasma treatment. The PDMS–glass well showed no leakage and was well suited to its intended use. When used for cell culturing, monocyte-derived dendritic cells (moDCs) showed no morphological anomalies, as tested by confocal microscopy, nor did they show an increase in cytokines, as tested using ELISA. This underlines the versatility and strength of PLA filament printing and exemplifies how it can be valuable to a researcher’s toolset.
CITATION STYLE
van der Borg, G., Warner, H., Ioannidis, M., van den Bogaart, G., & Roos, W. H. (2023). PLA 3D Printing as a Straightforward and Versatile Fabrication Method for PDMS Molds. Polymers, 15(6). https://doi.org/10.3390/polym15061498
Mendeley helps you to discover research relevant for your work.