Mathematical model for brucellosis transmission dynamics in livestock and human populations

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Brucellosis is a contagious zoonotic infection caused by bacteria of genus brucella which affects humans and animals. The disease is of veterinary importance, public health concern and economic significance in both developed and developing countries. It is transmitted through direct or indirect contact with infected animals or their contaminated products. In this paper we formulate and analyze a deterministic mathematical model for the transmission dynamics of brucellosis. The model formulated incorporates contaminated environment to human, infected livestock to human, and human to human modes of transmission. The impacts of human treatment in controlling the spread of brucellosis in the human population is investigated. Both analytical and numerical solutions reveal that prolonged human treatment has a significant impact in reducing the spread of Brucellosis in human population only while elimination of the disease in domestic ruminants has promising results to both human and ruminants. Thus, brucellosis control strategies should always focus on elimination of the disease in domestic ruminants.

Cite

CITATION STYLE

APA

Nyerere, N., Luboobi, L. S., Mpeshe, S. C., & Shirima, G. M. (2020). Mathematical model for brucellosis transmission dynamics in livestock and human populations. Communications in Mathematical Biology and Neuroscience, 2020. https://doi.org/10.28919/cmbn/4346

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free