Rationale: Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals. Objective: Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported. Methods and Results: Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal±genetic disruption of its cutC gene (ie, Clostridium sporogenes ΔcutC). Conclusions: Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.
CITATION STYLE
Skye, S. M., Zhu, W., Romano, K. A., Guo, C. J., Wang, Z., Jia, X., … Hazen, S. L. (2018). Microbial transplantation with human gut commensals containing CUTC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circulation Research, 123(10), 1164–1176. https://doi.org/10.1161/CIRCRESAHA.118.313142
Mendeley helps you to discover research relevant for your work.