Several mutations act as driver mutations in breast cancer, including GATA3 mutations. Reports of the relation between GATA3 mutations and breast cancer prognosis remain conflicting. Also, the role of GATA3 germline mutations is not well studied. We hypothesize that different mutation types could have different effects. Also, this study aims to assess effect of GATA3 mutations on GATA3 protein function as a transcription factor, and target pathways affected. DNA from de novo breast cancer female patients was sequenced to detect exon 6 GATA3 mutation. Sequence analysis was performed along with clinical and prognostic parameters and disease-free survival. Public datasets were analyzed for differentially expressed genes and pathways with mutant GATA3 patients. Mutations in GATA3 exon 6 were detected in 56.1% of patients (including 2 novel, Lys368fs, Pro354Lys). Intronic mutations were significantly higher in long disease-free survival group, while frameshift mutations were significantly higher in short DFS group. Patients with tumor size ≥20 had significantly higher protein coding and lower intronic mutations compared to patients with tumor size <20 mm. Differential expression and pathway analysis showed that mutant GATA3 had lost its negative regulatory effect on several pathways such as: signaling by interleukins, regulation of TP53 expression, and RUNX3 regulated CDKN1A transcription pathway. PIK3CA, SKP1, FBP1, SMAD3, ANXA9 and CLSTN2 were positively correlated to wild-type GATA3 expression, but not mutant GATA3. Intronic germline mutations of GATA3 could be related to better prognosis, while protein coding GATA3 germline mutations could be related to unfavorable prognosis. GATA3 mutations lead to dysregulation of pathways related to immunity, breast cancer development, and metabolism. Impact statement: GATA3 mutations are known to play an important role in breast cancer progression. The exact role and mechanisms of these mutations remain controversial as some studies suggest a relation to breast tumor growth, while others suggest a relation to longer survival. GATA3 germline mutations are not well studied in breast cancer. In this study, it was hypothesized that different types of GATA3 mutations could contribute to the breast cancer progression in different ways. GATA3 exon 6, which is important for GATA3 protein functions, was reported to have hotspots, and hence it was selected for study. Intronic GATA3 germline mutations were found to be related to favorable prognosis, while protein coding mutations were found to be related to unfavorable prognosis. Bioinformatics study of large publically available datasets showed that GATA3 mutations lead to dysregulation of pathways related to T-cells activation, inflammation, and breast cancer development.
CITATION STYLE
Ibrahim, I. H., Abdel-Aziz, H. G., Hassan, F. E. M., & El-Sameea, H. S. A. (2021). Role of GATA3 exon 6 germline mutations in breast cancer progression in Egyptian female patients. Experimental Biology and Medicine, 246(1), 40–47. https://doi.org/10.1177/1535370220958610
Mendeley helps you to discover research relevant for your work.