Air quality prediction models based on meteorological factors and real-time data of industrial waste gas

20Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the rapid economic growth, air quality continues to decline. High-intensity pollution emissions and unfavorable weather conditions are the key factors for the formation and development of air heavy pollution processes. Given that research into air quality prediction generally ignore pollutant emission information, in this paper, the random forest supervised learning algorithm is used to construct an air quality prediction model for Zhangdian District with industrial waste gas daily emissions and meteorological factors as variables. The training data include the air quality index (AQI) values, meteorological factors and industrial waste gas daily emission of Zhangdian District from 1st January 2017 to 30th November 2019. The data from 1st to 31th December 2019 is used as the test set to assess the model. The performance of the model is analysed and compared with the backpropagation (BP) neural network, decision tree, and least squares support vector machine (LSSVM) function, which has better overall prediction performance with an RMSE of 22.91 and an MAE of 15.80. Based on meteorological forecasts and expected air quality, a daily emission limit for industrial waste gas can be obtained using model inversion. From 1st to 31th December 2019, if the industrial waste gas daily emission in this area were decreased from 6048.5 million cubic meters of waste gas to 5687.5 million cubic meters, and the daily air quality would be maintained at a good level. This paper deeply explores the dynamic relationship between waste gas daily emissions of industrial enterprises, meteorological factors, and air quality. The meteorological conditions are fully utilized to dynamically adjust the exhaust gas emissions of key polluting enterprises. It not only ensures that the regional air quality is in good condition, but also promotes the in-depth optimization of the procedures of regional industrial enterprises, and reduces the conflict between environmental protection and economic development.

Cite

CITATION STYLE

APA

Liu, Y., Wang, P., Li, Y., Wen, L., & Deng, X. (2022). Air quality prediction models based on meteorological factors and real-time data of industrial waste gas. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-13579-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free