Oxygen evolution reaction (OER) consists of four sequential proton-coupled electron transfer steps, which suffer from sluggish kinetics even on state-of-the-art ruthenium dioxide (RuO2) catalysts. Understanding and controlling the proton transfer process could be an effective strategy to improve OER performances. Herein, we present a strategy to accelerate the deprotonation of OER intermediates by introducing strong Brønsted acid sites (e.g. tungsten oxides, WOx) into the RuO2. The Ru-W binary oxide is reported as a stable and active iridium-free acidic OER catalyst that exhibits a low overpotential (235 mV at 10 mA cm−2) and low degradation rate (0.014 mV h−1) over a 550-hour stability test. Electrochemical studies, in-situ near-ambient pressure X-ray photoelectron spectroscopy and density functional theory show that the W-O-Ru Brønsted acid sites are instrumental to facilitate proton transfer from the oxo-intermediate to the neighboring bridging oxygen sites, thus accelerating bridging-oxygen-assisted deprotonation OER steps in acidic electrolytes. The universality of the strategy is demonstrated for other Ru-M binary metal oxides (M = Cr, Mo, Nb, Ta, and Ti).
CITATION STYLE
Wen, Y., Liu, C., Huang, R., Zhang, H., Li, X., García de Arquer, F. P., … Zhang, B. (2022). Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32581-w
Mendeley helps you to discover research relevant for your work.