Aim: This study was conducted to investigate the effects of sex hormone-binding globulin (SHBG) on glucose metabolism and insulin resistance in human placental trophoblasts and involvement of the cAMP/PKA/CREB1 signaling pathway in these effects. Methods: An insulin resistance cell model of human trophoblasts was established. An SHBG-overexpression plasmid was transfected into these cells, and the expression of glucose transporter 1 (GLUT1), CREB and p-CREB was detected and analyzed in normal cells, model cells and all groups of transfected cells by real-time PCR and western blotting; cAMP, PKA, glucose consumption and pyruvic acid levels were also detected. Results: Among the four groups, there was no significant difference in the expression of CREB mRNA or GLUT1 mRNA (P > 0.05); however, CREB, p-CREB, GLUT1 protein, cAMP and PKA showed low expression (P < 0.05) and cell glucose consumption and pyruvate production were decreased (P < 0.05) in the model group, compared to the normal group. SHBG overexpression in insulin-resistant cells partially increased the levels of p-CREB, GLUT1, cAMP and PKA (P < 0.05). Intracellular glucose consumption and pyruvate production were nearly restored to the levels observed in cells from the normal group. Conclusion: Sex hormone-binding globulin regulates GLUT1 expression via the cAMP/PKA/CREB1 pathway and affects glucose transport in the placenta, which can induce insulin resistance and gestational diabetes.
CITATION STYLE
Chi, X., Feng, C., Wang, X., & Jin, Z. (2020). Sex hormone-binding globulin regulates glucose metabolism in human placental trophoblasts via cAMP/PKA/CREB1. Journal of Obstetrics and Gynaecology Research, 46(11), 2340–2346. https://doi.org/10.1111/jog.14429
Mendeley helps you to discover research relevant for your work.