Objectives: Hyperinsulinemia increases the risk factor of diabetes and infertility at a manifold. Lactobacillus plantarum has several medical significances with limited reports. Hence, this study assessed the effect of L. plantarum on sexual-reproductive functions and distribution of insulin receptors in the hypothalamic-pituitary-testicular axis of hyperinsulinemic mice. Methods: Forty male adult mice were divided into five groups as follows: Control, high-fat diet (HFD) + streptozotocin (STZ), therapeutic, co-administration group type 1 (CO-AD) and probiotics. They were either simultaneously exposed to an HFD and L. plantarum treatment for 28 days with a dose of STZ injection to induce hyperinsulinemia on day 28 or treated with L. plantarum for 14 days, and following induction of hyperinsulinemia. Mice were subjected to a sexual behavioural test and thereafter sacrificed under euthanasia condition. Blood, brain and testes were collected for biochemical and immunohistochemical assays. Results: Treatment with L. plantarum ameliorated reproductive hormones activity disruption, sexual behavioural defects, antioxidant imbalance, insulin dysregulation and lipid metabolism dysfunction following exposure to HFD + STZ when compared to the hyperinsulinemic untreated mice. Conclusions: Taken together, data from this study reveal that L. plantarum abrogated hyperinsulinemia-induced male sexual and reproductive deficits by modulating antioxidant status, lipid metabolism and insulin signalling in the hypothalamic-pituitary-testicular axis of mice.
CITATION STYLE
Edem, E. E., Nathaniel, B. U., Nebo, K. E., Obisesan, A. O., Olabiyi, A. A., Akinluyi, E. T., & Ishola, A. O. (2021). Lactobacillus plantarum mitigates sexual-reproductive deficits by modulating insulin receptor expression in the hypothalamic-pituitary-testicular axis of hyperinsulinemic mice. Drug Metabolism and Personalized Therapy, 36(4), 321–336. https://doi.org/10.1515/dmpt-2021-1000195
Mendeley helps you to discover research relevant for your work.