Regional climate change scenarios under global warming in Kazakhstan

Citations of this article
Mendeley users who have this article in their library.
Get full text


The aim of this paper is to report on the development of regional climate change scenarios for Kazakhstan as the result of increasing of CO2 concentration in the global atmosphere. These scenarios are used in the assessment of climate change impacts on the agricultural, forest and water resources of Kazakhstan. Climate change scenarios for Kazakhstan to assess both long-term (2 x CO2 in 2075) and short-term (2000, 2010 and 2030) impacts were prepared. The climate conditions under increasing CO2 concentration were estimated from three General Circulation Models (GCM) outputs: the model of the Canadian Climate Center Model (CCCM), the model of the Geophysical Fluid Dynamics Laboratory (GFDL) and the 1% transient version of the GFDL model (GFDL-T). The near-term climate scenarios were obtained using the probabilistic forecast model (PFM) to the year 2010 and the results of GFDL-T for years 2000 and 2030. A baseline scenario representing the current climate conditions based on observations from 1951 to 1980 was developed. The assessment of climate change in Kazakhstan based on the analysis of 100-years observations is given too. As a result of comparisons of the current climate (based on observed climate) the 1 x CO2 output from GCMs showed that the GFDL model best matches the observed climate. The GFDL model suggests that the minimum increase in temperature is expected in winter, when most of the territory is expected to have temperatures 2.3-4.5 °C higher. The maximum (4.3 to 8.2 °C) is expected to be in spring. CCCM scenario estimates an extreme warming above 11 °C in spring months. GFDL-T outputs provide an 'intermediate' scenario.




Pilifosova, O. V., Eserkepova, I. B., & Dolgih, S. A. (1997). Regional climate change scenarios under global warming in Kazakhstan. In Climatic Change (Vol. 36, pp. 23–40). Kluwer Academic Publishers.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free