Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis

64Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

Bacterial pathogens like Mycobacterium tuberculosis (Mtb) encounter acidic microenvironments in the host and must maintain their acid-base homeostasis to survive. A genetic screen identified two Mtb strains that cannot control intrabacterial pH (pHIB) in an acidic environment; infection with either strain led to severe attenuation in mice. To search for additional proteins that Mtb requires to survive at low pH, we introduced a whole-cell screen for compounds that disrupt pHIB, along with counter-screens that identify ionophores and membrane perturbors. Application of these methods to a natural product library identified four compounds of interest, one of which may inhibit novel pathway(s). This approach yields compounds that may lead to the identification of pathways that allow Mtb to survive in acidic environments, a setting in which Mtb is resistant to most of the drugs currently used to treat tuberculosis. © 2013 Darby et al.

Cite

CITATION STYLE

APA

Darby, C. M., Ingólfsson, H. I., Jiang, X., Shen, C., Sun, M., Zhao, N., … Nathan, C. (2013). Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068942

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free