Silicide formation of atomic layer deposition Co using Ti and Ru capping layer

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

CoSi 2 was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt (Co(iPr-AMD) 2) as a precursor and NH 3 as a reactant; this reaction produced a highly conformal Co film with low resistivity (50 μ?cm). To prevent oxygen contamination, ex-situ sputtered Ti and in-situ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and O 2 as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect o ratio. X-ray diffraction showed that CoSi 2 was in a poly-crystalline state and formed at over 800 C of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, CoSi 2 about 40 nm thick was formed while the SiO x interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of CoSi 2.

Cite

CITATION STYLE

APA

Yoon, J., Lee, H. B. R., Gu, G. H., Park, C. G., & Kim, H. (2012). Silicide formation of atomic layer deposition Co using Ti and Ru capping layer. Korean Journal of Materials Research, 22(4), 202–206. https://doi.org/10.3740/MRSK.2012.22.4.202

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free