We study whether the relations between the Weyl anomaly, entanglement entropy (EE), and thermal entropy of a two-dimensional (2D) conformal field theory (CFT) extend to 2D boundaries of 3D CFTs, or 2D defects of D≥3 CFTs. The Weyl anomaly of a 2D boundary or defect defines two or three central charges, respectively. One of these, b, obeys a c theorem, as in 2D CFT. For a 2D defect, we show that another, d2, interpreted as the defect's "conformal dimension," must be non-negative if the averaged null energy condition holds in the presence of the defect. We show that the EE of a sphere centered on a planar defect has a logarithmic contribution from the defect fixed by b and d2. Using this and known holographic results, we compute b and d2 for 1/2-Bogomol'nyi-Prasad-Sommerfield surface operators in the maximally supersymmetric (SUSY) 4D and 6D CFTs. The results are consistent with b's c theorem. Via free field and holographic examples we show that no universal "Cardy formula" relates the central charges to thermal entropy.
CITATION STYLE
Jensen, K., O’Bannon, A., Robinson, B., & Rodgers, R. (2019). From the Weyl Anomaly to Entropy of Two-Dimensional Boundaries and Defects. Physical Review Letters, 122(24). https://doi.org/10.1103/PhysRevLett.122.241602
Mendeley helps you to discover research relevant for your work.