A Study on the Wind Power Forecasting Model Using Transfer Learning Approach

9Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Recently, wind power plants that generate wind energy with electricity are attracting a lot of attention thanks to their smaller installation area and cheaper power generation costs. In wind power generation, it is important to predict the amount of generated electricity because the power system would be unstable due to uncertainty in supply. However, it is difficult to accurately predict the amount of wind power generation because the power varies due to several causes, such as wind speed, wind direction, temperature, etc. In this study, we deal with a mid-term (one day ahead) wind power forecasting problem with a data-driven approach. In particular, it is intended to solve the problem of a newly completed wind power generator that makes it very difficult to predict the amount of electricity generated due to the lack of data on past power generation. To this end, a deep learning based transfer learning model was proposed and compared with other models, such as a deep learning model without transfer learning and Light Gradient Boosting Machine (LGBM). As per the experimental results, when the proposed transfer learning model was applied to a similar wind power complex in the same region, it was confirmed that the low predictive performance of the newly constructed generator could be supplemented.

Cite

CITATION STYLE

APA

Oh, J. R., Park, J. J., Ok, C. S., Ha, C. H., & Jun, H. B. (2022). A Study on the Wind Power Forecasting Model Using Transfer Learning Approach. Electronics (Switzerland), 11(24). https://doi.org/10.3390/electronics11244125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free