Global sumoylation, SUMO chain formation, and genome stabilization are all outputs generated by a limited repertoire of enzymes. Mechanisms driving selectivity for each of these processes are largely uncharacterized. Here, through crystallographic analyses we show that the SUMO E2 Ubc9 forms a noncovalent complex with a SUMO-like domain of Rad60 (SLD2). Ubc9:SLD2 and Ubc9:SUMO noncovalent complexes are structurally analogous, suggesting that differential recruitment of Ubc9 by SUMO or Rad60 provides a novel means for such selectivity. Indeed, deconvoluting Ubc9 function by disrupting either the Ubc9:SLD2 or Ubc9:SUMO noncovalent complex reveals distinct roles in facilitating sumoylation. Ubc9:SLD2 acts in the Nse2 SUMO E3 ligase-dependent pathway for DNA repair, whereas Ubc9:SUMO instead promotes global sumoylation and chain formation, via the Pli1 E3 SUMO ligase. Moreover, this Pli1-dependent SUMO chain formation causes the genome instability phenotypes of SUMO-targeted ubiquitin ligase (STUbL) mutants. Overall, we determine that, unexpectedly, Ubc9 noncovalent partner choice dictates the role of sumoylation in distinct cellular pathways. © 2011, American Society for Microbiology. All Rights Reserved.
CITATION STYLE
Prudden, J., Perry, J. J. P., Nie, M., Vashisht, A. A., Arvai, A. S., Hitomi, C., … Boddy, M. N. (2011). DNA Repair and Global Sumoylation Are Regulated by Distinct Ubc9 Noncovalent Complexes. Molecular and Cellular Biology, 31(11), 2299–2310. https://doi.org/10.1128/mcb.05188-11
Mendeley helps you to discover research relevant for your work.