OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018

29Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The first OH and HO2 radical observation in Yangtze River Delta, one of the four major urban agglomerations in China, was carried out at a suburban site (Taizhou) in summer 2018 from May to June, aiming to elucidate the atmospheric oxidation capacity in this region. The maximum diurnal averaged OH and HO2 concentrations were 1.0×107 and 1.1×109g€¯cm-3, respectively, which were the second highest HOx (sum of OH and HO2) radical concentrations observed in China. HONO photolysis was the dominant radical primary source, accounting for 42g€¯% of the total radical initiation rate. Other contributions were from carbonyl photolysis (including HCHO, 24g€¯%), O3 photolysis (17g€¯%), alkene ozonolysis (14g€¯%), and NO3 oxidation (3g€¯%). A chemical box model based on the RACM2-LIM1 mechanism could generally reproduce the observed HOx radicals, but systematic discrepancy remained in the afternoon for the OH radical, when the NO mixing ratio was less than 0.3g€¯ppb. An additional recycling mechanism equivalent to 100g€¯ppt NO was capable to fill the gap. The sum of monoterpenes was on average up to 0.4g€¯ppb during daytime, which was all allocated to α-pinene in the base model. A sensitivity test without monoterpene input showed the modeled OH and HO2 concentrations would increase by 7g€¯% and 4g€¯%, respectively, but modeled RO2 concentration would significantly decrease by 23g€¯%, indicating that monoterpene was an important precursor of RO2 radicals in this study. Consequently, the daily integrated net ozone production would reduce by 6.3g€¯ppb without monoterpene input, proving the significant role of monoterpene in the photochemical O3 production in this study. In addition, the generally good agreement between observed and modeled HOx concentrations suggested no significant HO2 heterogeneous uptake process during this campaign. Incorporation of HO2 heterogeneous uptake process would worsen the agreement between HOx radical observation and simulation, and the discrepancy would be beyond the combined measurement-model uncertainties using an effective uptake coefficient of 0.2. Finally, the ozone production efficiency (OPE) was only 1.7 in this study, a few folds lower than other studies in (sub)urban environments. The low OPE indicated a slow radical propagation rate and short chain length. As a consequence, ozone formation was suppressed by the low NO concentration in this study.

Cite

CITATION STYLE

APA

Ma, X., Tan, Z., Lu, K., Yang, X., Chen, X., Wang, H., … Zhang, Y. (2022). OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Chemistry and Physics, 22(10), 7005–7028. https://doi.org/10.5194/acp-22-7005-2022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free