Integral Mass Balance (IMB) Method for Measuring Multicomponent Gas Adsorption Equilibria in Nanoporous Materials

17Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To assess the performance of an adsorbent for a particular gas separation, and for process design, it is necessary to determine multicomponent gas adsorption equilibria, either experimentally or from predictions based on models or theory. The experimental techniques commonly used for this purpose, however, are time-consuming and typically require large samples. In this article, we describe a new approach, called the Integral Mass Balance (IMB) method, which combines the controlled flow of a gas mixture with in situ gravimetric measurement and gas composition analysis using quadrupole mass spectrometry. The IMB method allows very rapid equilibrium multicomponent gas adsorption measurements to be performed on samples weighing only a few grams. The method is demonstrated and validated by performing binary O2/N2 adsorption measurements on a commercial 5A zeolite, at ambient temperature and a total pressure of 0.915 MPa. Excellent agreement with previously published data was found, using a 3.5 g sample, with a measurement time of only 4 h for a 20 point isotherm. In contrast, other techniques of equivalent accuracy would require around 20 days of experimental effort to collect a comparable amount of data. Selectivities were also calculated and shown to agree with previously published results. In principle, the technique could readily be extended to measure gas adsorption from ternary or higher mixtures.

Cite

CITATION STYLE

APA

Broom, D. P., Talu, O., & Benham, M. J. (2020). Integral Mass Balance (IMB) Method for Measuring Multicomponent Gas Adsorption Equilibria in Nanoporous Materials. Industrial and Engineering Chemistry Research, 59(46), 20478–20491. https://doi.org/10.1021/acs.iecr.0c04162

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free