Pvdf sensor foils employed to measure shear stress and temperature of friction welding

5Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Friction welding is a popular process for joining metal and polymer work pieces by rubbing them against each other. This way, friction heat is generated in a zone of the faying surfaces, thinner than 1 mm. After cooling down, the heated surfaces establish a tight and strong bond. To improve this joining process, a method is desirable allowing measuring generated temperature and shear stress in the zone between the joining work pieces. Unfortunately, this is a very difficult task because the welding zone cannot be accessed with a sensor without significantly altering the process and thereby the desired measurement results. This paper describes how shear stress and temperature change generated by rubbing polymer pieces in a friction welding machine have been measured between the faying surfaces by employing sensor foils from the piezoelectric and pyro-electric polymer polyvinylidene fluoride (PVDF). This way, heating and cooling rates, pressure rise of the pneumatic system, frequency rise of the starting machine, the duration of starting and stopping, the damping of the vibrations after the drive was stopped, and the stress generated by the pullback of the machine head have been measured. A careful characterization of the sensor was necessary to enable distinguishing the measured voltage due to straining, shearing and temperature change.

Cite

CITATION STYLE

APA

Zou, W., & Schomburg, W. K. (2020). Pvdf sensor foils employed to measure shear stress and temperature of friction welding. Sensors (Switzerland), 20(16), 1–20. https://doi.org/10.3390/s20164565

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free