Self-Supervised Learning for the Distinction between Computer-Graphics Images and Natural Images

3Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

With the increasing visual realism of computer-graphics (CG) images generated by advanced rendering engines, the distinction between CG images and natural images (NIs) has become an important research problem in the image forensics community. Previous research works mainly focused on the conventional supervised learning framework, which usually requires a good quantity of labeled data for training. To our knowledge, we study, for the first time in the literature, the utility of the self-supervised learning mechanism for the forensic classification of CG images and NIs. The idea is to make use of a large number of readily available unlabeled data, along with a self-supervised training procedure on a well-designed pretext task for which labels can be generated in an automatic and convenient way without human manual labeling effort. Differing from existing self-supervised methods, based on pretext tasks targeted at image understanding, or based on contrastive learning, we propose carrying out self-supervised training on a forensics-oriented pretext task of classifying authentic images and their modified versions after applying various manipulations. Experiments and comparisons showed the effectiveness of our method for solving the CG forensics problem under different evaluation scenarios. Our proposed method outperformed existing self-supervised methods in all experiments. It could sometimes achieve comparable, or better, performance. compared with a state-of-the-art fully supervised method under difficult evaluation scenarios with data scarcity and a challenging forensic problem. Our study demonstrates the utility and potential of the self-supervised learning mechanism for image forensics applications.

Cite

CITATION STYLE

APA

Wang, K. (2023). Self-Supervised Learning for the Distinction between Computer-Graphics Images and Natural Images. Applied Sciences (Switzerland), 13(3). https://doi.org/10.3390/app13031887

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free