Magnetization switching using topological surface states

65Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Topological surface states (TSSs) in a topological insulator are expected to be able to produce a spin-orbit torque that can switch a neighboring ferromagnet. This effect may be absent if the ferromagnet is conductive because it can completely suppress the TSSs, but it should be present if the ferromagnet is insulating. This study reports TSS-induced switching in a bilayer consisting of a topological insulator Bi2Se3 and an insulating ferromagnet BaFe12O19. A charge current in Bi2Se3 can switch the magnetization in BaFe12O19 up and down. When the magnetization is switched by a field, a current in Bi2Se3 can reduce the switching field by ~4000 Oe. The switching efficiency at 3 K is 300 times higher than at room temperature; it is ~30 times higher than in Pt/BaFe12O19. These strong effects originate from the presence of more pronounced TSSs at low temperatures due to enhanced surface conductivity and reduced bulk conductivity.

Cite

CITATION STYLE

APA

Li, P., Kally, J., Zhang, S. S. L., Pillsbury, T., Ding, J., Csaba, G., … Wu, M. (2019). Magnetization switching using topological surface states. Science Advances, 5(8). https://doi.org/10.1126/sciadv.aaw3415

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free