High Power Self-Aligned, Trench-Implanted 4H-SiC JFETs

Citations of this article
Mendeley users who have this article in their library.


The process technology for the fabrication of 4H-SiC trenched-implanted-gate 4H-SiC vertical-channel JFET (TI-VJFET) has been developed. The optimized TIVJFETs have been fabricated with self-aligned nickel silicide source and gate contacts using a process sequence that greatly reduces process complexity as it includes only four lithography steps. A source-pillars sidewall oxidation and subsequent removal of the metallization from the top of the sidewall oxide ensured isolation between gate and source. Optimum planarization of the source pillars top has been performed by cyclotene spin coating and etch back. The effect of the channel geometry on the electrical characteristics has been studied by varying its length (0.3 and 1.2μm) and its width (1.5-5μm). The voltage blocking exhibits a triode shape, which is typical for a static-induction transistor (SIT) operation. The transistors exhibited high ON current handling capabilities (Direct Current density >1kA/cm2) and values of RON ranging from 6 - 12 mΩ•cm2 depending on the channel length. Maximum voltage blocking was 800V limited by the edge termination. The maximum voltage gain was 51. Most transistors were normally-on. Normally-off operation has been observed for transistors lower than 2μm channel width (mask level) and deep implantation.




Vamvoukakis, K., Stavrinidis, A., Stefanakis, D., Konstantinidis, G., Kayambaki, M., & Zekentes, K. (2017). High Power Self-Aligned, Trench-Implanted 4H-SiC JFETs. In E3S Web of Conferences (Vol. 16). EDP Sciences. https://doi.org/10.1051/e3sconf/20171612001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free