Expecting the Unexpected: Entropy and Multifractal Systems in Finance

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Entropy serves as a measure of chaos in systems by representing the average rate of information loss about a phase point’s position on the attractor. When dealing with a multifractal system, a single exponent cannot fully describe its dynamics, necessitating a continuous spectrum of exponents, known as the singularity spectrum. From an investor’s point of view, a rise in entropy is a signal of abnormal and possibly negative returns. This means he has to expect the unexpected and prepare for it. To explore this, we analyse the New York Stock Exchange (NYSE) U.S. Index as well as its constituents. Through this examination, we assess their multifractal characteristics and identify market conditions (bearish/bullish markets) using entropy, an effective method for recognizing fluctuating fractal markets. Our findings challenge conventional beliefs by demonstrating that price declines lead to increased entropy, contrary to some studies in the literature that suggest that reduced entropy in market crises implies more determinism. Instead, we propose that bear markets are likely to exhibit higher entropy, indicating a greater chance of unexpected extreme events. Moreover, our study reveals a power-law behaviour and indicates the absence of variance.

Cite

CITATION STYLE

APA

Orlando, G., & Lampart, M. (2023). Expecting the Unexpected: Entropy and Multifractal Systems in Finance. Entropy, 25(11). https://doi.org/10.3390/e25111527

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free