Single-cell RNA sequencing can reveal valuable insights into cellular heterogeneity within tumour microenvironments (TMEs), paving the way for a deep understanding of cellular mechanisms contributing to cancer. However, high heterogeneity among the same cancer types and low transcriptomic variation in immune cell subsets present challenges for accurate, high-resolution confirmation of cells’ identities. Here we present scATOMIC; a modular annotation tool for malignant and non-malignant cells. We trained scATOMIC on >300,000 cancer, immune, and stromal cells defining a pan-cancer reference across 19 common cancers and employ a hierarchical approach, outperforming current classification methods. We extensively confirm scATOMIC’s accuracy on 225 tumour biopsies encompassing >350,000 cancer and a variety of TME cells. Lastly, we demonstrate scATOMIC’s practical significance to accurately subset breast cancers into clinically relevant subtypes and predict tumours’ primary origin across metastatic cancers. Our approach represents a broadly applicable strategy to analyse multicellular cancer TMEs.
CITATION STYLE
Nofech-Mozes, I., Soave, D., Awadalla, P., & Abelson, S. (2023). Pan-cancer classification of single cells in the tumour microenvironment. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37353-8
Mendeley helps you to discover research relevant for your work.