Estimates of contact among children, used for infectious disease transmission models and understanding social patterns, historically rely on self-report logs. Recently, wireless sensor technology has enabled objective measurement of proximal contact and comparison of data from the two methods. These are mostly small-scale studies, and knowledge gaps remain in understanding contact and mixing patterns and also in the advantages and disadvantages of data collection methods. We collected contact data from a middle school, with 7th and 8th grades, for one day using self-report contact logs and wireless sensors. The data were linked for students with unique initials, gender, and grade within the school. This paper presents the results of a comparison of two approaches to characterize school contact networks, wireless proximity sensors and self-report logs. Accounting for incomplete capture and lack of participation, we estimate that "sensor-detectable", proximal contacts longer than 20 seconds during lunch and class-time occurred at 2 fold higher frequency than "self-reportable" talk/touch contacts. Overall, 55% of estimated talk-touch contacts were also sensor-detectable whereas only 15% of estimated sensor-detectable contacts were also talk-touch. Contacts detected by sensors and also in self-report logs had longer mean duration than contacts detected only by sensors (6.3 vs 2.4 minutes). During both lunch and class-time, sensor-detectable contacts demonstrated substantially less gender and grade assortativity than talk-touch contacts. Hallway contacts, which were ascertainable only by proximity sensors, were characterized by extremely high degree and short duration. We conclude that the use of wireless sensors and self-report logs provide complementary insight on in-school mixing patterns and contact frequency.
CITATION STYLE
Leecaster, M., Toth, D. J. A., Pettey, W. B. P., Rainey, J. J., Gao, H., Uzicanin, A., & Samore, M. (2016). Estimates of social contact in a middle school based on self-report and wireless sensor data. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0153690
Mendeley helps you to discover research relevant for your work.