Revisiting internal waves and mixing in the Arctic Ocean

86Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To determine whether deep background mixing has increased with the diminishment of the Arctic sea ice, we compare recent internal wave energy and mixing observations with historical measurements. Since 2007, the North Pole Environmental Observatory has launched expendable current probes (XCPs) as a part of annual airborne hydrographic surveys in the central Arctic Ocean. Mixing in the upper 500 m is estimated from XCP shear variance and Conductivity-Temperature-Depth (CTD) derived Brunt-Väisälä frequency. Internal wave energy levels vary by an order of magnitude between surveys, although all surveys are less energetic and show more vertical modes than typical midlatitude Garrett-Munk (GM) model spectra. Survey-averaged mixing estimates also vary by an order of magnitude among recent surveys. Comparisons between modern and historical data, reanalyzed in identical fashion, reveal no trend evident over the 30 year period in spite of drastic diminution of the sea ice. Turbulent heat fluxes are consistent with recent double-diffusive estimates. Both mixing and internal wave energy in the Beaufort Sea are lower when compared to both the central and eastern Arctic Ocean, and expanding the analysis to mooring data from the Beaufort Sea reveals little change in that area compared to historical results from Arctic Internal Wave Experiment. We hypothesize that internal wave energy remains lowest in the Beaufort Sea in spite of dramatic declines in sea ice there, because increased stratification amplifies the negative effect of boundary layer dissipation on internal wave energy. ©2013. American Geophysical Union. All Rights Reserved.

Author supplied keywords

References Powered by Scopus

Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization

3619Citations
N/AReaders
Get full text

Abyssal recipes II: Energetics of tidal and wind mixing

1775Citations
N/AReaders
Get full text

Arctic sea ice decline: Faster than forecast

1566Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic

242Citations
N/AReaders
Get full text

Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review

131Citations
N/AReaders
Get full text

Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography

128Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Guthrie, J. D., Morison, J. H., & Fer, I. (2013). Revisiting internal waves and mixing in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(8), 3966–3977. https://doi.org/10.1002/jgrc.20294

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 39

56%

Researcher 24

34%

Professor / Associate Prof. 6

9%

Lecturer / Post doc 1

1%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 55

73%

Environmental Science 10

13%

Physics and Astronomy 7

9%

Engineering 3

4%

Save time finding and organizing research with Mendeley

Sign up for free