Classification of apatite structures via topological data analysis: a framework for a ‘Materials Barcode’ representation of structure maps

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.

Cite

CITATION STYLE

APA

Broderick, S., Dongol, R., Zhang, T., & Rajan, K. (2021). Classification of apatite structures via topological data analysis: a framework for a ‘Materials Barcode’ representation of structure maps. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90070-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free