Integrating Multiclass Light Weighted BiLSTM Model for Classifying Negative Emotions

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the continuous development of social networks, Weibo has become an essential platform for people to share their opinions and feelings in daily life. Analysis of users' emotional tendencies can be effectively applied to public opinion control, public opinion surveys, and product recommendations. However, the traditional deep learning algorithm often needs a large amount of data to be retained to obtain a better accuracy when faced with new work tasks. Given this situation, a multiclassification method of microblog negative sentiment based on MAML (model-agnostic metalearning) and BiLSTM (bidirectional extended short-term memory network) is proposed to represent the microblog text word vectorization and the combination of MAML and BiLSTM is constructed. The model of BiLSTM realizes the classification of negative emotions on Weibo and updates the parameters through machine gradient descent; the metalearner in MAML calculates the sum of the losses of multiple pieces of training, performs a second gradient descent, and updates the metalearner parameters. The updated metalearner can quickly iterate when faced with a new Weibo negative sentiment classification task. The experimental results show that compared with the prepopular model, on the Weibo negative sentiment dataset, the precision rate, recall rate, and F1 value are increased by 1.68 percentage points, 2.86 percentage points, and 2.27 percentage points, respectively.

Cite

CITATION STYLE

APA

Bhende, M., Thakare, A., Pant, B., Singhal, P., Shinde, S., & Dugbakie, B. N. (2022). Integrating Multiclass Light Weighted BiLSTM Model for Classifying Negative Emotions. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/5075277

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free