In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.
CITATION STYLE
Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., … Zuo, J. (2018). Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02781-w
Mendeley helps you to discover research relevant for your work.