When, where and how people move is a fundamental part of how human societies rganize around every-day needs as well as how people adapt to risks, such as economic scarcity or instability, and natural disasters. Our ability to characterize and predict the diversity of human mobility patterns has been greatly expanded by the availability of Call Detail Records (CDR) from mobile phone cellular networks. The size and richness of these datasets is at the same time a blessing and a curse: while there is great opportunity to extract useful information from these datasets, it remains a challenge to do so in a meaningful way. In particular, human mobility is multiscale, meaning a diversity of patterns of mobility occur simultaneously, which vary according to timing, magnitude and spatial extent. To identify and characterize the main spatio-temporal scales and patterns of human mobility we examined CDR data from the Orange mobile network in Senegal using a new form of spectral graph wavelets, an approach from manifold learning. This unsupervised analysis reduces the dimensionality of the data to reveal seasonal changes in human mobility, as well as mobility patterns associated with large-scale but short-term religious events. The novel insight into human mobility patterns afforded by manifold learning methods like spectral graph wavelets have clear applications for urban planning, infrastructure design as well as hazard risk management, especially as climate change alters the biophysical landscape on which people work and live, leading to new patterns of human migration around the world.
CITATION STYLE
Watson, J. R., Gelbaum, Z., Titus, M., Zoch, G., & Wrathall, D. (2020). Identifying multiscale spatio-temporal patterns in human mobility using manifold learning. PeerJ Computer Science, 6, 1–17. https://doi.org/10.7717/peerj-cs.276
Mendeley helps you to discover research relevant for your work.