An apple is one of the most cultivated and consumed fruits in the world and continuously being praised as a delicious and miracle food. It is a rich source of Vitamin A, Vitamin B1, Vitamin B2, Vitamin B6, Vitamin C, and folic acid etc, whereas the rotten fruits affect the health of human being as well as cause big economical loss in agriculture sectors and industries. Therefore, identification of rotten fruits has become a prominent research area. This paper focuses on the classification of rotten and good apple. For classification, first extract the texture features of apples such as discrete wavelet feature, histogram of oriented gradients (HOG), Law’s Texture Energy (LTE), Gray level co-occurrence matrix (GLCM) and Tamura features. After that, classify the rotten and good apples by applying various classifiers such as SVM, k-NN, logistic regression, and Linear Discriminant. The performance of proposed approach by using SVM classifier is 98.9%, which is found better with respect to the other classifiers.
CITATION STYLE
Singh, S., & Singh, N. P. (2019). Machine learning-based classification of good and rotten apple. In Lecture Notes in Electrical Engineering (Vol. 524, pp. 377–386). Springer Verlag. https://doi.org/10.1007/978-981-13-2685-1_36
Mendeley helps you to discover research relevant for your work.