In this paper, a thin metasurface perfect absorber based on refractory titanium nitride (TiN) is proposed. The size parameter of the metasurface is investigated based on the finite difference time domain method and transfer matrix method. With only a 15-nm-thick TiN layer inside the silica/TiN/silica stacks standing on the TiN substrate, the near-perfect absorption throughout the visible regime is realized. The cross-talk between the upper and lower dielectric layers enables the broadening of the absorption peak. After patterning the thin film into a nanodisk array, the resonances from the nanodisk array emerge to broaden the high absorption bandwidth. As a result, the proposed metasurface achieves perfect absorption in the waveband from 400 to 2000 nm with an average absorption of 95% and polarization-insensitivity under the normal incidence. The proposed metasurface maintains average absorbance of 90% up to 50-degree oblique incidence for unpolarized light. Our work shows promising potential in the application of solar energy harvesting and other applications requiring refractory metasurfaces.
CITATION STYLE
Huo, D., Ma, X., Su, H., Wang, C., & Zhao, H. (2021). Broadband absorption based on thin refractory titanium nitride patterned film metasurface. Nanomaterials, 11(5). https://doi.org/10.3390/nano11051092
Mendeley helps you to discover research relevant for your work.