Solar evaporation is a facile and promising technology to efficiently utilize renewable energy for freshwater production and seawater desalination. Here, the fabrication of self-regenerating hydrogel composed of 2D-MXenes nanosheets embedded in perovskite La 0.6Sr 0.4Co 0.2Fe 0.8O3−δ (LSCF)/polyvinyl alcohol hydrogels for efficient solar-driven evaporation and seawater desalination is reported. The mixed dimensional LSCF/Ti3C2 composite features a localized surface plasmonic resonance effect in the polymeric network of polyvinyl alcohol endows excellent evaporation rates (1.98 kg m−2 h−1) under 1 k Wm−2 or one sun solar irradiation ascribed by hydrophilicity and broadband solar absorption (96%). Furthermore, the long-term performance reveals smooth mass change (13.33 kg m−2) during 8 h under one sun. The composite hydrogel prompts the dilution of concentrated brines and redissolves it back to water (1.2 g NaCl/270 min) without impeding the evaporation rate without any salt-accumulation. The present research offers a substantial opportunity for solar-driven evaporation without any salt accumulation in real-life applications.
CITATION STYLE
Arshad, N., Irshad, M. S., Asghar, M. S., Alomar, M., Tao, J., Shah, M. A. K. Y., … Zhang, H. (2023). 2D MXenes Embedded Perovskite Hydrogels for Efficient and Stable Solar Evaporation. Global Challenges, 7(9). https://doi.org/10.1002/gch2.202300091
Mendeley helps you to discover research relevant for your work.