iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree

35Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

A soluble carrier growth hormone binding protein (GHBP) that can selectively and non-covalently interact with growth hormone, thereby acting as a modulator or inhibitor of growth hormone signalling. Accurate identification of the GHBP from a given protein sequence also provides important clues for understanding cell growth and cellular mechanisms. In the postgenomic era, there has been an abundance of protein sequence data garnered, hence it is crucial to develop an automated computational method which enables fast and accurate identification of putative GHBPs within a vast number of candidate proteins. In this study, we describe a novel machine-learning-based predictor called iGHBP for the identification of GHBP. In order to predict GHBP from a given protein sequence, we trained an extremely randomised tree with an optimal feature set that was obtained from a combination of dipeptide composition and amino acid index values by applying a two-step feature selection protocol. During cross-validation analysis, iGHBP achieved an accuracy of 84.9%, which was ~7% higher than the control extremely randomised tree predictor trained with all features, thus demonstrating the effectiveness of our feature selection protocol. Furthermore, when objectively evaluated on an independent data set, our proposed iGHBP method displayed superior performance compared to the existing method. Additionally, a user-friendly web server that implements the proposed iGHBP has been established and is available at http://thegleelab.org/iGHBP.

Cite

CITATION STYLE

APA

Basith, S., Manavalan, B., Shin, T. H., & Lee, G. (2018). iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Computational and Structural Biotechnology Journal, 16, 412–420. https://doi.org/10.1016/j.csbj.2018.10.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free