People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases. © 2012 Psychonomic Society, Inc.
CITATION STYLE
Kachergis, G., Yu, C., & Shiffrin, R. M. (2012). An associative model of adaptive inference for learning word-referent mappings. Psychonomic Bulletin and Review, 19(2), 317–324. https://doi.org/10.3758/s13423-011-0194-6
Mendeley helps you to discover research relevant for your work.