Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM) which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan) ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI). Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI's in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.
CITATION STYLE
Yao, F., Wang, C., Dong, D., Luo, J., Shen, Z., & Yang, K. (2015). High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery. Remote Sensing, 7(9), 12336–12355. https://doi.org/10.3390/rs70912336
Mendeley helps you to discover research relevant for your work.